Версия: 06.10.2025 09:18

Как построить кросс-коммутатор каналов ОЦК (64кбит/с) и потоков E1.

Модули телекоммуникационной платформы «Транспорт-30х4» позволяют строить кросс-коммутаторы разных размеров, от самых маленьких до огромных.

В этой статье описано как собрать полнодоступный кросс-коммутатор нужного вам размера используя модули телекоммуникационной платформы «Транспорт-30х4».

Кросс-коммутаторы, описанные в этой статье **полнодоступные**, позволяют кросс-коммутировать как целиком потоки E1, так и любой выбранный <u>канал ОЦК</u> (64 кбит/с) любого потока E1 кросс-коммутатора. Емкость создаваемых кросс-коммутаторов указана в количестве кросс-коммутируемых потоков E1, и в количестве кросс-коммутируемых каналов ОЦК.

Из чего строить кросс-коммутаторы. Внешний вид. Названия и коды модулей платформы.

Основой для построения кросс-коммутатора является плата управления и магистральных потоков платформы «Транспорт-30х4».

Эта плата является контролирующим центром - электронным мозгом и центром кросс-коммутации каналов и магистральных потоков терминала «Транспорт-30х4», построенного с ее помощью.

Плата имеет код производителя:

PTK.53.14

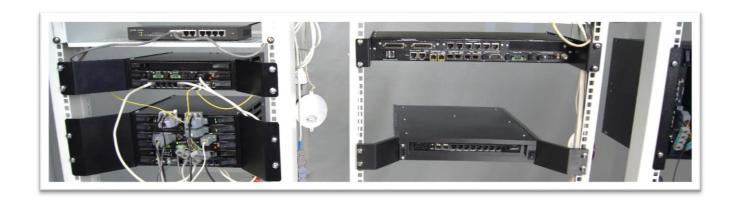
Называется:

Плата управления и магистральных потоков. 8E1, 4xEthernet, 256 каналов VoIP. Модификация РТК.53.4.

Выглядит так.

Тут и ниже, жмите на картинку, чтобы рассмотреть ее крупно.

В корпусе выглядит так:



На фото две платы РТК.53.14, установлены в 9-м и 18-м местах, слева направо.

Для построения кросс-коммутатора нужной емкости можно использовать разные типы корпусов, вмещающих от 1 до 21 платы, и высотой от 1.3U до 6U.

На фото слева направо показаны корпуса типа РТК.21.12, РТК.21.36, РТК.21.65.

На фото слева сверху вниз показаны корпуса типа РТК.21.65, РТК.21.36, в центре внизу РТК.21.75, справа — часть корпуса РТК.21.12.

В один корпус типа РТК.21.12 можно установить от 1 до 18 плат РТК.53.14 – места с 1-го по 18-е.

В один корпус типа РТК.21.36 можно установить от 1 до 5 плат РТК.53.14 – места с 1-го по 6-е.

В один корпус типа РТК.21.65 можно установить от 1 до 2 плат РТК.53.14 — места с 1-го по 3-е.

В один корпус типа РТК.21.75 можно установить 1 плату РТК.53.14.

Также потребуется блок питания типа РТК.21.69, или «блок питания с ИБЭП» типа РТК.21.71.

Блок питания типа РТК.21.69 выдает в том числе напряжение +5B, с максимальным током 8A, и может обеспечивать электропитанием 8 плат типа РТК.53.14.

Многофункциональный блок питания типа РТК.21.71 выдает в том числе напряжение +5B, с максимальным током 6A, и может обеспечивать электропитанием 6 плат типа РТК.53.14.

Опционально, в случае необходимости использования электропитания от источника переменного напряжения 220В, 50Гц, или в случае построения резервируемых схем электропитания можно использовать ИБЭП типа РТК.23.11, РТК.21.71, и АКБ типа РТК.21.76, РТК.21.77.

Все модули платформы «Транспорт-30х4», которые можно использовать для построения кросс-коммутатора, как модули телекоммуникационного конструктора, описаны в этом документе:

20251001 Что использовать для построения кросс коммутатора.pdf

Основа построения - кросс-коммутатор платы РТК.53.14 платформы «Транспорт-30х4».

Функциональная схема кросс-коммутатора платы РТК.53.14 показана ниже:

20190512 Функциональная схема кросс коммутатора платформы Транспорт 30х4

Плата РТК.53.14 позволяет строить кросс-коммутаторы емкостью

от 8 E1 x 8 E1 = 8 x 31 ОЦК x 8 x 31 ОЦК = 248 ОЦК x 248 ОЦК,

до 264 E1 x 264 E1 = 8184 ОЦК x 8184 ОЦК.

Ниже показаны примеры, как это сделать.

Кросс-коммутатор емкостью 8 E1 x 8 E1

= 8 x 31 ОЦК x 8 x 31 ОЦК

= 248 ОЦК х 248 ОЦК.

Спецификация, такая, смотри этот документ:

Корпус РТК.21.75.

Плата управления и магистральных потоков РТК.53.14.

Выглядеть будет примерно так:

Управление через Ethernet, ЛВС Ethernet, или Интернет. Удаленное управление через E1, Ethernet, ЛВС Ethernet, или Интернет.

Питание от источника постоянного напряжения от -40В до -72В, номинальное 48В, и 60В, и от источника переменного напряжения от 220В до 60В, 50Гц, номинальное напряжение 220В. Что из этого подключили к разъему электропитания от того и работает.

Кросс-коммутатор емкостью 16 E1 x 16 E1

- = 16 х 31 ОЦК Х 16 х 31 ОЦК
- = 496 ОЦК х 496 ОЦК.

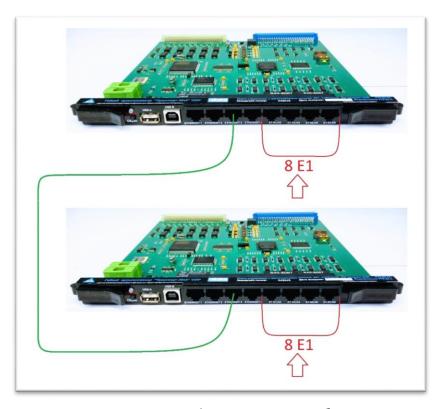
Спецификация, такая, смотри этот документ:

Корпус РТК.21.65.

Плата управления и магистральных потоков РТК.53.14 – 2шт.

Многофункциональный блок питания типа РТК.21.71 – 1шт.

Выглядеть будет примерно так:



На фото сверху РТК.21.71, внизу РТК.53.14, корпус РТК.21.65.

Управление через Ethernet, ЛВС Ethernet, или Интернет. Удаленное управление через E1, Ethernet, ЛВС Ethernet, или Интернет.

Питание от источника постоянного напряжения от -36В до -72В, номинальное 48В, и 60В, и от источника переменного напряжения от 220В до 60В, 50Гц, номинальное напряжение 220В, и от внешней буферной АКБ номинальным напряжением 48В. Что из этого подключили к плате РТК.21.71 от того и работает.

Функциональная схема такая:

Зеленая линия – связь через Ethernet используя кабель.

Кросс-коммутаторы емкостью ОТ

24 E1 x 24 E1

- = 24 х 31 ОЦК Х 24 х 31 ОЦК
- = 744 ОЦК х 744 ОЦК

ДО

264 E1 x 264 E1

- = 264 х 31 ОЦК Х 264 х 31 ОЦК
- = 8184 ОЦК х 8184 ОЦК.

Мы строим такие кросс-коммутаторы.

Такие кросс-коммутаторы строятся функционально также, как кросс-коммутатор в примере выше — емкостью 16 E1 x 16 E1.

Если вам требуется кросс-коммутатор емкостью больше 16 E1 x 16E1 — шлите нам запрос, мы пришлем вам предпроектное решение с подробным описанием.

Особенности построения.

Плата РТК.53.14 полно доступно кросс-коммутирует «8 потоков E1 и 32 <u>виртуальных потока E1</u> передаваемых через Ethernet», всего 40 E1.

1 канал ОЦК занимает в Ethernet полосу пропускания 80 кбит/с.

Используя максимум 2 порта Ethernet платы РТК.53.14, ее можно последовательно соединить с 32-мя другими платами РТК.53.14.

33 платы PTK.53.14 можно соединить через Ethernet используя внешний Ethernet коммутатор с 33-мя портами Ethernet.

Если соединить 3 платы РТК.53.14, каждую, с каждой через Ethernet получим кросс- коммутатор емкостью 24 E1 x 24 E1

- = 24 x 31 ОЦК X 24 x 31 ОЦК
- = 744 ОЦК х 744 ОЦК.

Если соединить 33 платы РТК.53.14, каждую, с каждой через Ethernet получим кросс- коммутатор емкостью 264 E1 x 264 E1

- = 264 х 31 ОЦК Х 264 х 31 ОЦК
- = 8184 ОЦК х 8184 ОЦК.

100% резервируемый кросс-коммутатор.

Мы знаем как строить 100% резервируемые системы связи.

Для построения 100% резервируемого кросс-коммутатора требуется использовать корпус типа РТК.21.64.

Также можно для горячего резервирования устанавливать по 2шт блоков питания РТК.21.69 или РТК.21.71, и, если необходимо резервировать электропитание можно использовать по 2шт ИБЭП типа РТК.23.11, РТК.21.71.

В случае необходимости создания 100% резервируемого кросс-коммутатора шлите нам запрос с задачей по организации связи, мы пришлем вам предпроектное решение.

Опубликовано среда, 1 октября 2025 г.